Laws of Exponents

Laws of Exponents

The laws of exponents are explained here along with their examples.

1. Multiplying Powers with same Base

For example: x² × x³, 2³ × 2⁵, (-3)² × (-3)⁴
In multiplication of exponents if the bases are same then we need to add the exponents.
Consider the following: 
1. 2³ × 2² = (2 × 2 × 2) × (2 × 2) = 23+2 = 2⁵
2. 3⁴ × 3² = (3 × 3 × 3 × 3) × (3 × 3) = 34+2 = 3⁶
3. (-3)³ × (-3)⁴ = [(-3) × (-3) × (-3)] × [(-3) × (-3) × (-3) × (-3)]
                        = (-3)3+4 
                        = (-3)⁷
4. m⁵ × m³ = (m × m × m × m × m) × (m × m × m)
                  = m5+3 
                  = m⁸
From the above examples, we can generalize that during multiplication when the bases are same then the exponents are added.

aᵐ × aⁿ = am+n

In other words, if ‘a’ is a non-zero integer or a non-zero rational number and m and n are positive integers, then

aᵐ × aⁿ = am+n
Similarly, (ab)ᵐ × (ab)ⁿ = (ab)m+n
(ab)m×(ab)n=(ab)m+n

Note: 

(i) Exponents can be added only when the bases are same.

(ii) Exponents cannot be added if the bases are not same like

m⁵ × n⁷, 2³ × 3⁴

For example:

1. 5³ ×5⁶

= (5 × 5 × 5) × (5 × 5 × 5 × 5 × 5 × 5)

= 53+6, [here the exponents are added] 

= 5⁹

2. (-7)10 × (-7)¹²
= [(-7) × (-7) × (-7) × (-7) × (-7) × (-7) × (-7) × (-7) × (-7) × (-7)] × [( -7) × (-7) × (-7) × (-7) × (-7) × (-7) × (-7) × (-7) × (-7) × (-7) × (-7) × (-7)].

= (-7)10+12, [Exponents are added] 

= (-7)²²

3. (12)4 × (12)3
=[(12) × (12) × (12) × (12)] × [(12) × (12) × (12)] 
=(12)4+3

=(12)⁷

4. 3² × 3⁵

= 32+5

= 3⁷

5. (-2)⁷ × (-2)³

= (-2)7+3

= (-2)10

6. (49)³ × (49

= (49)3+2

= (49)⁵

We observe that the two numbers with the same base are

multiplied; the product is obtained by adding the exponent.

2. Dividing Powers with the same Base

For example:

3⁵ ÷ 3¹, 2² ÷ 2¹, 5(²) ÷ 5³

In division if the bases are same then we need to subtract the exponents.

Consider the following: 

2⁷ ÷ 2⁴ = 2724

            = 2×2×2×2×2×2×22×2×2×2
            = 274
            = 2³

5⁶ ÷ 5² = 5652

            = = 5×5×5×5×5×55×5
            = 562 
            = 5⁴
10⁵ ÷ 10³ = 105103
                = 10×10×10×10×1010×10×10
                = 1053
                = 10²
7⁴ ÷ 7⁵ = 7475
            = 7×7×7×77×7×7×7×7
            = 745 
            = 71
Let a be a non zero number, then

a⁵ ÷ a³ = a5a3

            = a×a×a×a×aa×a×a
            = a53 
            = a²
again, a³ ÷ a⁵ = a3a5
                     = a×a×aa×a×a×a×a
                     = a(53)
                     = a2
Thus, in general, for any non-zero integer a,

aᵐ ÷ aⁿ = aman = amn

Note 1: 

Where m and n are whole numbers and m > n;

aᵐ ÷ aⁿ = aman = a(nm)

Note 2: 

Where m and n are whole numbers and m < n;

We can generalize that if ‘a’ is a non-zero integer or a non-zero rational number and m and n are positive integers, such that m > n, then

aᵐ ÷ aⁿ = amn if m < n, then aᵐ ÷ aⁿ = 1anm

Similarly, (ab)m ÷ (ab)n = ab 
For example:
1. 710 ÷ 7⁸ = 71078
                             = 7×7×7×7×7×7×7×7×7×77×7×7×7×7×7×7×7

                             = 7108, [here exponents are subtracted] 

                             = 7²

2. p⁶ ÷ p¹ = p6p1

               = p×p×p×p×p×pp
               = p61, [here exponents are subtracted] 
               = p⁵

3. 4⁴ ÷ 4² = 4442

                = 4×4×4×44×4

                = 442, [here exponents are subtracted] 

                = 4²

4. 10² ÷ 10⁴ = 102104

                   = 10×1010×10×10×10

                   = 10(42)[See note (2)] 

                   = 102
5. 5³ ÷ 5¹

= 531

= 5²

6. (3)5(3)2

= 352

= 3³

7. (5)9(5)6

= (-5)96

= (-5)³

8. (72)⁸ ÷ (72)⁵

= (72)85

= (72

3. Power of a Power

For example: (2³)², (5²)⁶, (3² )3

In power of a power you need multiply the powers.

Consider the following

(i) (2³)⁴

Now, (2³)⁴ means 2³ is multiplied four times

i.e. (2³)⁴ = 2³ × 2³ × 2³ × 2³

=23+3+3+3

=2¹²

Note: by law (l), since aᵐ × aⁿ = am+n.

(ii) (2³)²

Similarly, now (2³)² means 2³ is multiplied two times

i.e. (2³)² = 2³ × 2³

= 23+3, [since aᵐ × aⁿ = am+n

= 2⁶

Note: Here, we see that 6 is the product of 3 and 2 i.e,

                         (2³)² = 23×2= 2⁶

(iii) (42

Similarly, now (42)³ means 42
 is multiplied three times
i.e. (42)³ =42 × 42 × 42
= 42+(2)+(2)
= 4222

= 46

Note: Here, we see that -6 is the product of -2 and 3 i.e,

                (42)³ = 42×3 = 46
For example:

1.(3²)⁴ = 32×4 = 3⁸

2. (5³)⁶ = 53×6 = 5¹⁸
3. (4³)⁸ = 43×8 = 4²⁴
4. (aᵐ)⁴ = am×4 = a⁴ᵐ
5. (2³)⁶ = 23×6 = 2¹⁸
6. (xᵐ)n = xm×(n) = xmn
7. (5²)⁷ = 52×7 = 5¹⁴
8. [(-3)⁴]² = (-3)4×2 = (-3)⁸
In general, for any non-integer a, (aᵐ)ⁿ= am×n = amn
Thus where m and n are whole numbers. 
If ‘a’ is a non-zero rational number and m and n are positive integers, then 
{(ab)ᵐ}ⁿ = (ab)
For example:

Laws of Exponents or Indices[(25)³]²

= (25)3×2

= (25)⁶

Telegram Group Join Now
WhatsApp Group Join Now

Leave a Comment

Ads Blocker Image Powered by Code Help Pro

Ads Blocker Detected!!!

We have detected that you are using extensions to block ads. Please support us by disabling these ads blocker.

Powered By
100% Free SEO Tools - Tool Kits PRO